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Abstract

In this paper, the second-order shear deformation plate theory is developed for the study of the natural  
frequencies of rectangular nanoplates based on the nonlocal elasticity theory of Eringen. The governing  
equation of nanoplates is derived by using Hamilton’s principle. The analytical solution for the natural  
frequencies and corresponding mode shapes of simply supported nanoplates is established. The effects  
of nonlocal parameters, the plate aspect ratios, and the plate thicknesses on the free vibration response  
are investigated. The obtained results show good agreement with other available solutions. The formulation  
and these analytical results of the proposed method could serve as a benchmark in the evaluation of  
future research.
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Introduction
In recent years, nanostructures such as  
nanoplates have attracted worldwide attention  
from the research community for future application  
of nano-electromechanical systems (NEMS)  
since they have superior mechanical, chemical,  
and electronic properties. Nanoplates are widely  
used as resonators and sensors that may operate  
at very high frequencies up to 1 gigahertz.  
Therefore, a thorough understanding of the  
vibration behavior of nanoplates is important in  
the design of NEMS materials. It is well-known  
that, for the nanoscale structure, the classical  
continuum theory cannot predict the mechanical  
behavior of nanostructures. Thus, it is necessary  
to modify a continuum model to study the  

mechanical responses of nanostructures. The  
nonlocal elasticity has been widely developed  
for analyzing the mechanical behaviors of  
various nanostructures due to its reliable and  
accurate results. Moreover, this approach is less  
computationally expensive in comparison to  
molecular dynamics (MD). For the application  
of nonlocal elasticity to study the performance  
of nanoplates, Murmu and Pradhan (2009)  
investigated the influence of the small-scale  
effect on free in-plane vibration by employing  
a nonlocal continuum model. Aghababaei and  
Reddy (2009) studied the bending and vibration  
of a plate by using third-order shear deformation 
plate theory including the nonlocal effect.  
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Ansari et al. (2010) investigated the free  
vibration response of single-layered graphene  
sheets with the nonlocal elasticity model and  
also compared their results with the MD method.  
Aksencer and Aydogdu (2011) analyzed the  
buckling and vibration of nanoplates using the  
Navier- and Levy-type solutions. Farajpour  
et al. (2011) investigated the buckling behavior  
of nanoplates of variable thicknesses under  
biaxial compression, and solved the problems  
by Galerkin’s method. Satish et al. (2012)  
analyzed the thermal vibration of orthotropic  
nanoplates by using the 2-variable refined  
plate theory and nonlocal continuum mechanics.  
Wang and Li (2012) studied the bending  
behavior of a nanoplate embedded in an 
elastic matrix. Malekzadeh and Shojaee (2013)  
applied the 2-variable refined plate theory  
to study the free vibration of nanoplates.  
Pouresmaeeli et al. (2013) examined the  
vibration of viscoelastic orthotropic nanoplates  
embedded in a viscoelastic medium. Zenkour  
and Sobhy (2013) investigated the thermal  
buckling of nanoplates resting on a Winkler- 
Pasternak elastic medium, based on the sinusoidal  
shear deformation plate theory. Chakraverty  
and Behera (2014) studied the free vibration  
of rectangular nanoplates, and solved the  
problems by the Rayleigh–Ritz method. Recently,  
Panyatong et al. (2015) investigated the bending 
behavior of nanoplates embedded in an elastic  
medium including the nonlocal elasticity and  
surface stress. The classical plate theory (CPT)  
which neglects the effect of shear deformations  

can induce inaccurate results for the analysis of  
thick plates. The first-order shear deformation  
theory (FSDT) accounts for the transverse shear  
deformation by assuming a constant shear strain  
throughout the plate thickness and requires a  
shear correction factor in order to satisfy the zero  
transverse shear stress at the top and bottom  
of the plates. To avoid using a shear correction  
factor but retaining consideration of the  
transverse shear strain and rotation, the second- 
order shear deformation theory (SSDT) is used  
for this work because the formulation of the  
displacement field has a simple form. 
 From a literature review, the free vibration  
of homogenous nanoplates by using the SSDT  
has never been formulated. Thus, the main  
purpose of this work is to study the free vibration  
behavior of nanoplates by developing the SSDT  
in conjunction with the nonlocal elasticity.  
Comparisons of the obtained results with those  
of other available solutions are performed to  
verify the reliability of the present formulation.  
Finally, the influences of nonlocal parameters,  
plate aspect ratios, and thicknesses on the free  
vibration responses are studied.

Formulation of the Problem 
A rectangular nanoplate of thickness h, length  
a, and width b is considered with the Cartesian  
coordinate system (x, y, z), as shown in Figure 1.  
The SSDT with nonlocal elasticity is developed  
to derive the governing equations for the  
vibration problem. The displacements at any  

Figure 1. Geometric of a uniform rectangular nanoplate
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material point depend only on the middle plane  
of the nanoplate and the straight line normal to  
the middle plane is defined by a quadratic curve  
after deformation. Although the surface energy  
has a significant influence on the response of  
nanostructures, the presented formulation is  
confined by not including the surface energy  
effect. 

Nonlocal Elasticity Theory 

 The nonlocal elasticity theory was first  
proposed by Eringen (1983, 2002). The nonlocal  
elasticity theory is based on the crucial concept  
that the stress at a point is a function of the  
strain at all points of the body. According to  
the nonlocal elasticity theory, the constitutive  
relations can be represented by the following  
differential equations as

, (1) 

w h e r e  ,  , 
, and q33 = q44=  q55 = 2G.  

Moreover E, G, and v are the modulus of elasticity,  
the shear modulus, and Poisson’s ratio, 
respectively. The scale factor  is the  
nonlocal parameter, where li is an internal  
characteristic length (such as lattice spacing,  
granular distance, and distance between C-C  
bonds) and e0 is a material constant which is  
determined to calibrate the nonlocal model with  
the experimental results or the results of MD  
simulations.

The Second-Order Shear Deformation Plate 
Theory and the Governing Equation of  
Motion 

 According to the SSDT, the displacement  
field can be expressed as

,       (2a)  

,     (2b)

,                                                                                                           (2c) 

where u0, v0 and w0 are the displacement  
components of the material point at the middle  
plane of the plate; Ø1 and 1 are the rotations  
for the y and x axes, respectively; and Ø2 and 

2 are variables of the second-order terms.  
Furthermore, the strain-displacement relations  
can be expressed as

 (3a)

 (3b)

 (3c)

  (3d)

 (3e) 

Hamilton’s principle is employed to derive the  
equations of motion of nanoplates. Referring  
to Hamilton’s principle, the following equation  
is obtained:

                                                                                                  (4) 

where δK, δU, and T are the variation of the  
kinetic energy, the strain energy, and the final  
time, respectively. The variation of the kinetic  
energy is given by

 (5) 

where  is the mass density of nanoplates and     
Ω is the area of the middle plane of nanoplates.  
The variation of the strain energy is given by

 (6) 

where V is the volume of nanoplates. Substituting  
Equations (5) and (6) into Equation (4) and  
then using Equations (1)-(3), we can derive the  
equations of motion, as follows:

 (7a) 
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                                               (7b)

 (7c) 

 (7d)

 (7e) 

 (7f)

 (7g) 

where N, M, L, Q and R are the nonlocal stress  
resultants and I0, I2 , and I4 are the mass inertias 
which are defined as

 (8a)
 

 (8b)

 (8c)

 (8d)

 (8e)

 (8f)

 (8g)
 

 (8h)

 (8i)

 (8j)

 (8k)
 

 (8l)

 (8m)

  (8n)-(8p)

Finally, substituting Equations (8a)-(8m) into 
Equations (7a)-(7g), we obtain the governing 
equations of motion in terms of the displacement 
field, as follows:

 (9a)

 (9b)

 (9c)

 (9d)

 (9e) 

 
 (9f)

 (9g)  

 Note that the equations of motion of the  
first-order shear deformation theory can be  
obtained from the above equations by neglecting  
the variables Ø2 and 2.

Solution of the problem

 In this section, the governing differential  
equations for the free vibration of the nanoplates  
including the nonlocal effects have been solved  
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by Navier’s approach for the simply supported 
boundary conditions. The simply supported  
boundary conditions for a rectangular plate are

a) v = 0, w = 0, 1 = 0, 2 = 0, Nxx = 0,  (10a)
 Mxx = 0 and Lxy = 0 at x = 0, a,
b) u = 0, w = 0, Ø1 = 0, Ø2 = 0, Nyy = 0,  (10b)
 Myy = 0 and Lxy = 0 at y = 0, b. 

The displacement solution can be expressed as

 (11a)

 (11b)

 (11c)

 (11d)

 (11e)

 (11f)

 (11g)

where i = , α = mπ / a, and β= nπ / b, and m 
and n denote the half wave numbers for the x 
and y directions, respectively. By using Equations  
(11a)-(11g), the simply supported boundary  
conditions for the nanoplates, i.e. Equations  
(10a) and (10b), will be satisfied automatically.  
Substituting Equations (11a)-(11g) into Equations  
(9a)-(9g), we obtain the system of the linear  
equations as

 (12) 

where the matrix  and  are given in the  
Appendix. Equation (12) is a standard eigenvalue  

problem in which the eigenvalues are found  
by setting the determinant of  to  
zero. The obtained eigenvalues are the natural  
frequencies of nanoplates. For the presentation  
of the analytical results, the following dimen-
sionless natural frequency is introduced:
                                                                                                    

 (13)

Numerical Results and Discussion 
In this section, the numerical results are presented  
to study the free vibration behavior of the  
nanoplates with simply supported boundary  
conditions.

Reliability

 In order to present the reliability of the  
proposed analytical solution, the obtained results  
are compared with those of other available plate  
theories in open literature with the material  
properties of the nanoplates, as listed in Table 1.  
In Table 2, the dimensionless natural frequencies  
for the different values of nonlocal parameters  
are contained. It can be seen that, in all cases, the  
present results are in good agreement with the  
classical, first-order, third-order, and 2-variable  
refined plate theories. Especially, they are close  
to the results calculated from the third-order  
shear deformation plate theory. Moreover, the  
proposed formulation is employed to analyze  
single-layered grapheme sheets (SLGS). The  
material properties of SLGS are contained in  
Table 3. The analytical results of zigzag and  
armchair SLGS are shown in Tables 4 and 5,  
respectively, and are also compared with those  
from MD. It is clearly observed that the present  
results are very close to the results of MD. Thus,  
the proposed formulation has accuracy and  
reliability for the prediction of the free vibration  

Table 1.  Material properties of nanoplates

Properties
Aghababaei and Reddy (2009)

Modulus of elasticity, E 30×106 Pa
Poisson’s ratio, v 0.3
Mass density,  1.0 N/a3
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response of nanoplates.

Parametric Studies 

 The dimensionless natural frequencies  
as nonlocal parameters for the different plate  
theories are plotted in Figures 2(a)-(c). It is  
clearly observed that the nonlocal parameters  
significantly affect the vibration behavior of  
nanoplates. The dimensionless natural frequency  

decreases for all mode shapes with increasing  
the nonlocal parameter μ. Thus, the local  
nanoplate model with (μ = 0 mm2) overestimates  
the free vibration response of nanoplates. To  
evaluate the influence of the plate aspect  
ratios on the free vibration of nanoplates,  
Figures 3(a)-(c) are established. It is evidently  
observed that the dimensionless natural  
frequency increases when the length-to-width  

Table 2.  The dimensionless natural frequency  of simply supported nanaoplates (a = 10 nm)

b / a a / h μ
Aghababaei and Reddy (2009)

Malekzadeh 
and Shojaee 

(2013) Present

Classical First-order Third-order 2- variable
1

10

0 0.0963 0.0930 0.0935 0.0930 0.0934
1 0.0880 0.0850 0.0854 0.0850 0.0854

2 0.0816 0.0788 0.0791 0.0788 0.0791

3 0.0763 0.0737 0.0741 0.0737 0.0740

4 0.0720 0.0696 0.0699 - 0.0698

5 0.0683 0.0660 0.0663 - 0.0663

20

0 0.0241 0.0239 0.0239 0.0239 0.0239

1 0.0220 0.0218 0.0218 0.0218 0.0218

2 0.0204 0.0202 0.0202 0.0202 0.0202

3 0.0191 0.0189 0.0189 0.0189 0.0189

4 0.0180 0.0178 0.0179 - 0.0179

5 0.0171 0.0169 0.0170 - 0.0169

2

10

0 0.0602 0.0589 0.0591 0.0589 0.0590
1 0.0568 0.0556 0.0557 0.0556 0.0557

2 0.0539 0.0527 0.0529 0.0527 0.0529

3 0.0514 0.0503 0.0505 0.0503 0.0504

4 0.0493 0.0482 0.0483 - 0.0483

5 0.0473 0.0463 0.0464 - 0.0464

20

0 0.0150 0.0150 0.0150 0.0150 0.0150

1 0.0142 0.0141 0.0141 0.0141 0.0141

2 0.0135 0.0134 0.0134 0.0134 0.0134

3 0.0129 0.0128 0.0128 0.0128 0.0128

4 0.0123 0.0123 0.0123 - 0.0123

5 0.0118 0.0118 0.0118 - 0.0118
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ratio (a / b) increases, because the higher values  
of the length-to-width ratio have more stiffness  
than the lower ones. For high values of the  
length-to-width ratio, there are large differences  
in the dimensionless natural frequency between  
including and excluding the shear deformation  
effect. Finally, to study the effects of the  
nanoplates’ thickness on the vibration char-
acteristic, Figures 4(a)-(c) are plotted. It is  

Table 3.  Material properties of graphene sheet

Properties
Ansari et al. (2010)

Modulus of elasticity, E 1×1012 Pa
Poisson’s ratio, v  0.16
Mass density,  2250 kg/m3

Thickness, h 0.34 nm

Table 4.  The natural frequency of simply-supported zigzag single-layered graphene sheets (SLGS)

Length 
of square 

SLGS, 
(nm)

Ansari et al. (2010) (3)
Present,

μ = 1.41 nm2

(THz)

Difference 
between

(1) and (2),
(%)

Difference 
between

(1) and (3),
(%)

(1)
Molecular
dynamics,

(THz)

(2)
First-order, 
μ = 1.41 nm2

(THz) 
10 0.0587725 0.0584221 0.0580588 0.60 1.21
15 0.0273881 0.0282888 0.0275709 3.29 0.67
20 0.0157524 0.0164593 0.0159061 4.49 0.98
25 0.0099840 0.0107085 0.0103042 7.26 3.21
30 0.0070655 0.0075049 0.0072039 6.22 1.96
35 0.0052982 0.0055447 0.0053143 4.65 0.30
40 0.0040985 0.0042608 0.0040797 3.96 0.46
45 0.0032609 0.0033751 0.0032294 3.50 0.97
50 0.0026194 0.0027388 0.0026193 4.56 0.01

Table 5. The natural frequency of simply-supported armchair single-layered graphene sheets (SLGS)

Length 
of square 

SLGS,  
(nm)

Ansari et al. (2010) (3)
Present,

μ = 1.34 nm2

(THz)

Difference 
between

(1) and (2),
(%)

Difference 
between

(1) and (3),
(%)

(1)
Molecular
dynamics,

(THz)

(2)
First-order, 
μ = 1.34 nm2

(THz) 
10 0.0595014 0.0592359 0.058375 0.45 1.89
15 0.0277928 0.0284945 0.027647 2.52 0.53
20 0.0158141 0.0165309 0.015932 4.53 0.74
25 0.0099975 0.0107393 0.010315 7.42 3.18
30 0.0070712 0.0075201 0.007209 6.35 1.95
35 0.0052993 0.0055531 0.005317 4.79 0.34
40 0.0041017 0.0042657 0.004081 4.00 0.49
45 0.0032614 0.0033782 0.003231 3.58 0.95
50 0.0026197 0.0027408 0.002620 4.62 0.01
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Figure 2. (a)-(c) The dimensionless natural frequencies 
 as nonlocal parameters with different plate 
 theories for a/h = 10. (CPT = classical plate 
 theory, FSDT = first-order shear deformation 
 theory, SSDT = second-order shear  
 deformation theory) 

Figure 3. (a)-(c). The dimensionless natural frequencies  
 as the length-to-width ratio of nonlocal  
 parameters with different plate theories for  
	 a/h	=	10	and	μ	=	1	nm2. (CPT = classical  
 plate theory, FSDT = first-order shear 
 deformation theory, SSDT = second-order  
 shear deformation theory) 

evident that the influence of the increases in the  
nanoplates’ thickness leads to the dimensionless  
natural frequency increases for all nonlocal  
parameters. This also means that increasing  
the thickness increases the stiffness of the  
nanoplates.

Conclusions
In this study, the linear free vibration of nanoplates  

is studied based on the SSDT and the nonlocal  
elasticity theory. The governing equation of the  
nanoplate model is derived. The solution for the  
free vibration of simply supported nanoplates is  
established. From the numerical study, it is obvious  
that the small-scale effect from the nonlocal  
elasticity decreases the natural frequency of  
nanoplates. The analytical formulation of the  
proposed method could serve as a benchmark in  
the evaluation of future research.
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Figure 4 (a)-(c). The dimensionless natural frequencies 
 as the thickness-to-length ratio of nonlocal  
 parameters with different plate theories  
 for a/b = 1 and μ = 1 nm2. (CPT = classical  
 plate theory, FSDT = first-order shear  
 deformation theory, SSDT = second-order  
 shear deformation theory ) 
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Appendix 
Coefficients C11 through C77 and M11 through  
M77 :

 (A1) 
 (A2) 
 (A3)

 (A4) 
 (A5) 

 (A6) 
 (A7)

 (A8) 
 (A9) 
 (A10) 

 (A11) 
 (A12) 

 (A13) 
 (A14) 
 (A15) 

 (A16)
 (A17) 

  (A18) 
 (A19) 

 (A20) 
 (A21) 

 (A22) 
  (A23) 

 (A24) 
 (A25)
 (A26) 

 (A27) 
 (A28) 

 (A29)
 (A30)
  (A31)
 (A32)
 (A33)
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 (A34)
 (A35)

 (A36)
 (A37)
 (A38)

 (A39)
 (A40)
 (A41)
 (A42)
  (A43)
 (A44)
 (A45)

 (A46)
 (A47)
 (A48)
 (A49)
 (A50)
  (A51)
 (A52)
 (A53)
  (A54)
 (A55)
 (A56)
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