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Abstract 

Intercity motorways in Thailand play an important role in national development, as they link 

various industrial zones and main harbors for transporting goods abroad. Furthermore, they 

connect national tourist attractions. When considering the trend of accident occurrences on 

motorways, it has been found that the severity of accident trend has leaned forwards to be on the 

continuous increase. This research attempts to establish guidelines for reducing the severity of 

accidents on motorways number 7 and number 9 in Thailand; thus, the differences between the two 

motorways were considered. This research used and analyzed data from 2010 to 2016 from the 

Intercity Motorway Division, Department of Highways. As the severity of injuries cannot be 

directly measured, the number of minor injuries, serious injuries, and deaths, as well as the 

number of vehicles involved in each accident, were chosen for analysis using structural equation 

modeling ( SEM) . Subsequently, a multiple group analysis was used to analyze the differences 

between the two models. The results of the factor analysis revealed significantly different severities 

of injuries. For motorway number 7 , the traffic flow factor mostly affected accident size, followed 

by the road factor and the environmental factor, respectively. For motorway number 9, only 

surrounding and road factors affected accident size. 
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Introduction 

Background 

The roads in Thailand, consisting of highways, 

rural highways, and expressways, are the 

responsibility of the Ministry of Communication. 

Based on the number of accidents in 2014, 

highways had the highest number of accidents 

(86.31%), followed by rural highways (8.08%) and 

expressways (5.6%), respectively (Office of 

transport and traffic policy and planing, 2014). 

Moreover, when concentrating only the roads  

 

 

 

 
 

controlled by the Department of Highways, which 

are the greatest number of routes and have 

relatively high traffic quantity per day when 

compared to the roads nationwide, it was found 

that, in 2015, accident occurrences on highways, 

divided into 18 highway offices throughout the 

country, had a total of 13,065 accidents with 

fatalities and injuries (2,118 and 11,750, respectively). 

For intercity motorways, 510 accidents caused 18 
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Table 1. Freight transportation Vehicle-Kilometers on Highways in 2018 
 

Vehicle – Type (Unit) 
Nation Highways Inter – city 

Highways 
Total 

Primary Secondary Provincial 

Freight transportation Vehicle-
Kilometers on Highways display 

on table in 2018 (VK) 

33,365,484,829 28,504,951,282 36,267,032,249 3,845,700,553 101,983,168,913 

Percentage of Vehicle-
Kilometers 

33% 28% 36% 4% 100% 

Distance 7,527 11,352 32,755 208 51,842 

Total freight vehicles (Vehicles) 4,432,773 2,511,007 1,107,221 18,488,944.97 26,539,947 
Percentage of freight vehicles% 17% 9% 4% 70% 100% 

Note: VK = Vehicle-Kilometer 

fatalities and 198 injuries. In a 100-km ratio, the 

intercity motorway route had the highest 

proportion of 245.76 accidents with 8.67 fatalities 

and 95 injuries (Thailand Department of Highway, 

2018). Intercity motorways, (i.e., routes with full 

control of access) are designed for vehicles using 

higher speeds than usual and paying tolls. At 

present, the available intercity motorways are 

motorway number 7 linking roads from Bangkok 

to Chonburi Province, and motorway number 9 that 

connects the eastern outer ring roads in Bangkok 

and Bang Pa-in, Ayudthaya with Bang Phli, 

Samutprakarn Province. The significance of the 

two motorways is that they constitute the main 

routes joining industrial zones in Ayudthaya, 

Chonburi, and Rayong, as well as multimodal 

transportation, from roads, to surface transportation, 

to export goods abroad (Thailand Department of 

Highway, 2017). 

Regarding freight transportation vehicle-

kilometers on highways in 2018 (Table 1), intercity 

motorways accounted for 4% of activity among 

highway types. However, in terms of freight 

vehicles, intercity motorways had the most vehicles 

(about 70%). 

Thus, understanding the aspect of crash size 

among various factors on intercity motorways, 

policymakers could apply this result to new 

policies to reduce the accident size, which is one 

method of sustainable freight transportation 

development. 

Concerning expressways, Ji et al. (2014) have 

identified that expressways have played an 

important role in national economic development 

and also resulted in the change of land cover. Zhao 

et al. (2014) have studied characteristic parameters, 

such as traffic volume, average travel speed, and 

the density of toll use, which affected the flow 

speed on expressways, bottlenecks occurring on the 

ramp of expressways (Sun et al., 2015), and the 

effect of towing on road traffic flow (Han et al., 

2016). For the study of accidents occurring on 

expressways, scholars have conducted studies on 

factors affecting the accident rate on expressways 

in Korea (Lee and Jeong, 2016), on the relationship 

between traffic congestion and crashes on urban 

expressway state roads in central Florida in the 

United States, (Shi et al., 2016) and on 

expressways in Shanghai, China (Sun et al., 2016). 

Furthermore, researchers have carried out studies 

on the average speed factor and traffic quantity 

affecting crash risks (Yu et al., 2016) and the 

prediction of the crash frequency on expressways 

in China (Ma et al., 2017). In Thailand, 

Rudjanakanoknad et al. (2012) conducted a study 

on expressways analyzing the speed used on 

Bangkok expressways based on drivers’ attitudes. 

Regarding studies about accident occurrences on 

expressways, scholars have investigated the effect 

of injury level occurring on Bangkok expressways 

and the prediction of loss values by crashes 

(Ratanavaraha and Suangka, 2014). The Thairoads 

(2014) has studied the relationship between and 

predictions about driving speeds and accidents on 

expressways and motorways in Thailand. The 

foundation’s study was conducted by comparing 

the vehicles running at speeds that fell in the 85 

percentile and the 15 percentile, if the speed 

difference is low, it will cause fewer fatalities and 

injuries. 

The difference between the two motorways is 

their purposes. Motorway number 7 was built to 

develop a transportation route to the eastern coast 

to solve the congestion problem on Sukhumvit 

Road, and number 9 serves to decrease the 

blocking of roads in Bangkok and the metropolitan 

area, and also be a bypass road reducing the traffic 

jam in Bangkok and the metropolitan area. Thus, 

the traffic on motorway number 9 will be higher 

than that on motorway number 7, and the 

population around the motorway number 9 area 

will be also higher. Figure 1(a) shows that 

motorway number 9 has more traffic, with a 

maximum range of 57,652-93,287 vehicles per day. 

Figure 1(b) shows the population living around the 

two motorways divided by subdistrict. It was found 

that subdistricts around motorway number 9 had a 

higher population than those around motorway 
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Figure 1. AADT and Population of Motorway routes 

number 7. These issues cause different levels of 

accident severities on the two motorways. 

 

Accident size 

The indicators of most accidents are 1) 

accident frequency, and researchers have studied 

prediction of different injury levels (Wang et al., 

2011); the prediction of crash frequencies classified 

by crash types (Jonathan et al., 2016); and the 

prediction of crash frequencies on expressways (Ma 

et al., 2017). 2) Other researchers have investigated 

the risk of accidents occurring, including the 

prediction of crash risks in relation to bus drivers’ 

behaviors (Mallia et al., 2015) and accident risks on 

expressways in Shanghai (Yu et al., 2016) and in 

Korea (Kwak and Kho, 2016). 3) Research has also 

been conducted on accident severity, which is 

mostly measured by victims’ injury levels. There 

have been many studies on highway accident 

severity, the model construction of victims’ injury 

levels (Yamamoto et al., 2008), and accident 

severity levels caused by single-vehicle crashes in 

Hong Kong (Yau, 2004). Further studies have 

explored the construction of severity predictions for 

each injury level on roads in Spain (Carmen Carnero 

and José Pedregal, 2010), injury levels of rear-end 

crashes among trucks on roads in Beijing (Yuan et 

al., 2017), and the factors affecting injury levels 

(i.e., no injuries, minor injuries, serious injuries, and 

fatalities in multiple-vehicle crashes) (Bogue et al., 

2017). 

From the previously reviewed literature, it is 

evident that there have been many indicators that 

researchers could not directly measure, so the 

different indicators need to be collected to 

additionally cover the causes of accidents. Lee et al. 

(2008) gathered the accident occurrence indicators 

using the phrase “accident size” for a Korean 

highway study. The four factors that indicated 

accident size were the number of deaths, injured 

people, vehicles involved, and damaged vehicles. 

Variable Selections 

If the number or the severity of accidents is to 

be reduced, the factors affecting their causes at 

different levels should be studied. In the past, 

scholars have carried out many studies on the 

factors that potentially cause accidents without 

considering drivers’ demographic data, such as sex 

and age, as those elements were difficult to control 

for (Lee et al., 2008). The relevant factors could be 

divided into three groups. 

1) The environmental factor (e.g., climate 

conditions, visualizations, and seasons) includes 

visual perceptions, such as clearness or fogginess 

on the motorway, and the time (either day or night) 

of the accidents studied. Road surface conditions 

include dry and wet surfaces related to breaking 

distance (Champahom et al., 2020b). 

2) The road factor concerns pavement types 

(Pallavi and arpan, 2020) (e.g., concrete and 

asphalt concrete), which differ in terms of friction. 

The number of lanes influences the speed flow 

(Champahom et al., 2020a). Another factor involves 

road geometry (e.g., straight or curvy), which 

relates to the speed of vehicles (Champahom et al., 

2019). 

3) The traffic flow factor concerns the 

driver’s perception. The weekday and traffic 

volume factors are related to the situation flow rate 

(Milton et al., 2008; Malyshkina and Mannering, 

2010; Wang et al., 2011; Anastasopoulos, 2016). 

Truck involvement directly affects crash severity 

(Hong et al., 2019). 

Accidents involving trucks tend to result in 

more severe accidents (Li-Yen and Fred, 1999; 

Lemp et al., 2011), possibly due to the enormous, 

heavy trucks (Milton et al., 2008). Thus, many 

scholars have specifically investigated crashes 

involving trucks. Al-Bdairi and Hernandez (2017) 

studied the injury severity of large truck-involved  

in run-off-road crashes. Osman et al. (2016) 

investigated crashes of large trucks in work zones 

resulting in injuries. Castillo-Manzano et al. (2016) 

examined the relationship between truck load 

capacity and traffic accidents. Chang and Chien 

(2013) conducted a study on drivers’ injury levels 

in case of truck-involved accidents and focused 

only on large trucks (Zhu and Srinivasan, 2011). 

The study was conducted on injury levels caused 

by single- and multi-vehicle crashes involving 

trucks on rural highways (Chen and Chen, 2011; 

Girotto et al., 2016). 

 

Structure Equation Modeling (SEM) and 

Measurement Invariance Analysis 

This research examined the accident size, of 

which the variables cannot be directly measured. 

Thus, it was compulsory to have indicator variables. 
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Figure 2. Elements of SEM 

SEM is a tool to measure the relationship between 

variables that cannot be directly measured, called 

latent variables (Lee et al., 2008). Each latent 

variable has structural data representing the 

relationship between multiple variables comprising 

direct or causal relationships, indirect or mediated 

relationships, associations, and roles of errors of 

measurements in models (Washington et al., 2011). 

Most research using SEM for analysis often involves 

behaviors, such as young drivers in at-fault crashes 

or traffic citations (Hassan and Abdel-Aty, 2013) or 

the use of technology resulting in distractions for 

drivers (El-Basyouny and El-Bassiouni, 2013). 

Studies using SEM to determine the influence of 

factors affecting accidents or their severity include a 

study on factors affecting motor vehicle crashes, 

which used the number of accidents and injury 

levels to indicate the dependent variables (O'Connor 

et al., 2017), as well as an investigation of crash risk 

resulting from driving behaviors analyzed by the 

personalities and attitudes toward traffic safety of 

bus drivers (Mallia et al., 2015). 

The indicators of accident size consist of  

1) the number of victims divided into three injury 

levels, including the number of minor injuries, 

serious injuries (i.e., those admitted to the hospital 

after an accident), and deaths. The causes of the 

three injury levels were the potential indicators of 

accident size, and there were many studies 

predicting accident costs due to the different values 

of the three mentioned injury levels (Thonghim  

et al., 2007), 2) the number of vehicles in each 

accident, as well the number of victims incurring 

damages in an accident (Lee et al., 2008). 

Due to the differences in motorways, analyzing 

their differences required two models, which were 

measurements of invariance. In other words, we 

tested the parameter values of the measurement 

model, including thresholds, factor loadings, and 

residual variance to determine whether they were 

different or not. 

The purpose of this research is to examine 

factors affecting accident size on motorways number 

7 and number 9 in Thailand and compare the two 

models, which play important roles in freight 

transportation. The results can be used to develop 

new policies or improve road characteristics to 

reduce accident severity. 

Methods 

Structural Equation Modeling (SEM) 

Elements of Structural Equation Modeling 

(SEM) 

For the elements of SEM, as shown in Figure 

2 (Wirachai, 1999), the groups of variables could 

be classified into two categories, exogenous and 

endogenous variables. Both groups consist of latent 

variables and observable variables. The structure of 

the SEM of the two sub-models consists of 1) the 

measurement model, which shows the relationship 

between the latent variable and observable variable 

used for indicating each latent variable, is a 

potential exogenous and endogenous measurement 

model, and 2) the structural model, which 

represents the relationship between the exogenous 

and endogenous latent variables. The details of the 

SEM are as follows. 

 

Χ =  Λ𝑋𝜉 + 𝛿  (1) 

 

Equation 1 is the calculation for the 

exogenous measurement model or the variables 

generally called independent variables, where X is 

vector  

q1. For the observable variable of latent variable 

X, ΛX is the matrix of regression effects for the 

observable variable of the independent variable. 

 

Y =  Λ𝑋𝜂 + 𝜀  (2) 

 

Equation 2 is the calculation for the 

endogenous measurement model or the group of 

variables generally called dependent variables, 

where Y is vector p1 for the observable variable 

of the latent variable Y. 
 

η =  𝛽𝜂 + Γ𝜉 + 𝜁  (3) 

 

Equation 3 is the calculation for the structural 

model, where η is vector m x 1 for the latent 

endogenous variable. The details of symbols are 

presented as shown in Table 2. 

 

Estimation of Parameters 

Parameters are estimated in SEM by many 

methods, such as unweighted least squares, 

maximum likelihood (ML), weighted least squares 

(WLS), and generalized least squares. 
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Table 2. Description of structural equation modeling 
 

Symbol Name Description Size 
X Esk Vector of X Observe exogenous variables  q1 
Y Wi Vector of Y Observe endogenous variables  p1 

𝜉 Xi Vector of K Latent exogenous variables  n1 

𝜂 Eta Vector of E Latent endogenous variables  m1 

𝛿 Delta Vector of measurement error term for observe variable X  q1 

𝜀 Epsilon Vector of measurement error term for observe variable Y p1 

𝛬𝑥 Lamda-X Matrix of regression effects for X on 𝜉 qn 

Λ𝑦 Lamda-Y Matrix of regression effects for Y on 'Eta' 𝜂 pm 

𝛤 Gamma Matrix of causal effects from 'Xi' to 'Eta' 𝜂 mn 

𝛣 Beta Matrix of causal effects between "Eta" 𝜂 mm 

𝜁 Zeta Vector of measurement error terms m1 

𝛷 Phi Covariance matrix between error terms for exogenous variable of 'Xi' 𝜉 nn 

𝛹 Psi Covariance matrix between error terms for exogenous variable of 'Zeta' 𝜁 mm 

𝛩𝛿 Theta-delta Covariance matrix between error terms for exogenous variable of 'Delta' 𝛿 qq 

Θ𝜀 Theta-epsilon Covariance matrix between error terms for exogenous variable of 'Epsilon' 𝜀 pp 

Remake : q = number of observe exogenous variable, p = number of endogenous variable, n = number of latent exogenous variable and m = number 

of latent endogenous variable. 

 

 

Table 3. Descriptive statistic 
 

Variable (value) 

Motorway No.7 (Average) Motorway No.9 (Average) 

Frequency 
No.  

deaths 

No. serious 

injuries 

No. minor 

injuries 

No. 

involved 
Frequency 

No. 

deaths 

No. serious 

injuries 

No. minor 

injuries 

No.  

involved 

  Visualization 
          

 
Clean (1) 2,098 0.04 0.11 0.46 1.80 1,549 0.04 0.12 0.34 1.71  
Other (Raining, 

Dust and mist) (0) 

274 0.04 0.08 0.49 1.62 446 0.01 0.07 0.26 1.79 

  Road surface 
          

 
Wet (0) 313 0.02 0.07 0.48 1.63 510 0.01 0.06 0.24 1.76  
Dry (1) 2,059 0.04 0.12 0.46 1.80 1,485 0.04 0.12 0.35 1.72 

  Time 
          

 
Day (1) 1,292 0.03 0.10 0.46 1.81 1,104 0.03 0.10 0.32 1.78  
Night (0) 1,080 0.05 0.12 0.47 1.73 891 0.04 0.11 0.32 1.67 

  Pavement of road 
          

 
Asphalt concrete 

(1) 

2,207 0.03 0.1 0.47 1.77 1,916 0.03 0.11 0.31 1.74 

 
Concrete (0) 165 0.10 0.25 0.39 0.18 79 0.04 0.11 0.49 1.54 

  Number of lane 
          

 
4 (2) 1,852 0.04 0.12 0.49 1.77 1,808 0.04 0.11 0.31 1.71  
8 (4) 520 0.02 0.07 0.35 1.80 157 0.01 0.04 0.37 1.83 

  Road geometric 
          

 
Straight (1) 2,061 0.04 0.11 0.47 1.81 1,626 0.04 0.12 0.33 1.76  
Other (Curve, 

Ramp, Intersection 

etc.) (0) 

311 0.03 0.12 0.44 1.57 369 0.02 0.07 0.26 1.60 

  Truck involvement 
          

 
No (0) 1,610 0.03 0.10 0.43 1.62 1,326 0.03 0.07 0.30 1.53  
Yes (1) 762 0.05 0.14 0.52 2.10 669 0.04 0.18 0.37 2.12 

  AADT (Vehicles/day) 
          

 
42,734 128 

    
12 0.07 0.13 0.16 1.56  

46,851 643 0.03 0.14 0.56 1.60 637 
    

 
51,857 428 

    
111 0.02 0.12 0.30 1.55  

51,944 132 0.06 0.09 0.47 1.61 146 
    

 
57,651 333 0.03 0.06 0.32 2.11 481 

    

 
93,287 708 

    
608 0.03 0.10 0.35 1.82 

  Day 
          

 
Weekday (0) 1,706 0.04 0.11 0.45 1.78 1,476 0.03 0.10 0.29 1.74 

  Holiday (1) 666 0.03 0.12 0.48 1.77 519 0.04 0.13 0.41 1.69 

Remark : Motorway No.7 = 2,372 cases, Motorway No. 9 = 1,995 casest 

Nevertheless, ML is mostly used as an estimator 

because ML is suitable for the high number of 

samples, while the chi-square test of each variable 

must have a normal distribution as well. However, 

the variables in this research were not all in a 

normal distribution. Most of them were discrete 

data and dichotomous outcomes, so it was 

necessary to use WLS, called WLSMV in Mplus 

(Yu, 2002; Lee et al., 2008), as an estimator. 

The concept of parameter estimation in SEM 

is the prediction from the population covariance 

matrix of the observable variable (∑), which can 

be identified in terms of unknown parameter (𝜃). 

The unknown parameter consists of Β, Γ, Φ, and Ψ 

matrices, which are the elements of the covariance 

matrix in the model or ∑ = ∑(𝜃). Thus, the 

parameters of 𝜃 could be predicted by minimizing 

the discrepancies between the sample covariance 

matrix and the population covariance matrix, which 

acquired ∑(𝜃). 
For considering the variables without normal 

distribution or dichotomous outcomes, WLS was 
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Table 4. Goodness-of-fit test 
 

Measure Defining Fit indices 

Chi-square statistic (x2)  

Significant p-values expected* Degree of freedom (df)  

P-Value  

x2/ df  Value <3** 

CFI CFI = 1 −
max[(𝑋𝐻0

2 − 𝑑𝑓𝐻0
), 0]

max[(𝑋𝐻0

2 − 𝑑𝑓𝐻0
), (𝑋𝑏

2 − 𝑑𝑓𝑏)]
 Above 0.92* 

TLI TLI =
𝑋𝑏

2/𝑑𝑓𝑏 − 𝑋𝐻0

2 /𝑑𝑓𝐻0

(𝑋𝑏
2/𝑑𝑓𝑏) − 1

 Above 0.92* 

WRMR 𝑊𝑅𝑀𝑅 = √
2𝑁𝐹(𝛉ˆ)

𝑒
 Value < 1.00*** 

RMSEA 𝑅𝑀𝑆𝐸𝐴 = √max [(
2𝐹(𝛉ˆ)

𝑑
−

1

𝑁
) , 0] 

Values < 0.07 with CFI of 0.92 or 

higher* 

Remark:   
* (Hair Jr et al., 2010), ** (Washington et al., 2011), ***(Yu, 2002) 

Tucker-Lewis Index (CFI) and Comparative Fit Index (TLI): Where dfb and dfHo are the degrees of freedom 

for the baseline and the hypothesized (under H0) models, respectively 

Weighted root-mean-square Residual (WRMS): where e is the number of sample statistics, 

F(θˆ) = 𝐹𝑊𝐿𝑆(𝜃) = min [(
1

2
)𝑠 − 𝜎(𝜃)] ′𝑊−1[𝑠 − 𝜎(𝜃)] which is the minimum of the weighted least squares 

(WLS) fitting function 

Root-mean-square error of approximation (RMSEA): where d denotes the degrees of freedom 

of the model, and F(θˆ) is the minimum of the fitting function F(θ) 

used to calculate the fit function by predicting 𝜃 by 

minimizing the fit function: 

 
𝐹𝑊𝐿𝑆(𝜃) = [𝑠 − 𝜎(𝜃)]′𝑊−1[𝑠 − 𝜎(𝜃)]  (4) 

 

where s is the vector of 
1

2
(𝑝 + 𝑞)(𝑝 + 𝑞 + 1) 

elements of the sample covariance matrix, 𝑊−1 

stands for 
1

2
(𝑝 + 𝑞)(𝑝 + 𝑞 + 1) ×

1

2
(𝑝 + 𝑞)(𝑝 + 𝑞 +

1) positive-definite weight matrix, and 𝜎(𝜃) 

denotes the corresponding same-order vector of 
∑(𝜃). 

 

Measurement Invariance Analysis 

The means comparison of the regression 

coefficients estimated from two population groups, 

such as a country or culture, were conducted by 

supposing that the outcome variables of the two 

models were equal. In this research, the variables 

included discrete exogenous variables (categorical 

variables). The steps of comparison were as 

follows: 1) construct a model called the configural 

equivalence model starting from the determination 

of loadings and thresholds across groups; then set 

factor mean values of the two groups as 0, and fix 

residual variance as 1 in both two groups; 2) build  

a full equivalence model determining setting factor 

loadings and threshold constraints to be equal 

across groups; and determine the residual variance 

to have stable value as 0 in one group, while the 

others have self- regulating values (Muthén and 

Muthén, 2012). For the interpretation of 

measurement invariance, the difference of the chi-

square statistic (x2) and the degree of freedom (df) 

should be considered. If the two values are 

statistically significant, the models of the two 

motorways are different (Muthén and Muthén, 

2012). 

 
The Model Fit Indices 

To check whether the relationship between 

the latent variables (endogenous and exogenous) 

was sufficiently adequate to analyze SEM or not, 

the values indicating the model parameters were 

examined, such as Tucker-Lewis Index 

(CFI)>0.95, Root-mean-square error of 

approximation (RMSEA)<0.05 (Mulaik and 

Millsap, 2000). The models were developed 

relevant to the empirical data on the values of the 

goodness-of-fit statistics, of which the standard 

criteria were accepted, as shown in Table 4 (Yu, 

2002; Hair et al., 2010; Kenny, 2016). 

Results 

Crash Data Reports 

The data used in this research were supported 

by the Intercity Motorways Division, Department 

of Highways. The accident data occurred on 

motorways number 7 and number 9 during the 

2010-2016 period. Latent variables used to 

consider the relationship with accident severity 

were constructed based on the ground theory of 

accident occurrences consisting of the traffic flow, 

environmental, and road factors (Hassan and Al-

Faleh, 2013). The observable variables in this 

research were designated as dummy variables. The 

details of the measurement model are as follows. 
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Table 5. Model fit indices of invariance test 
 

  
x2 statistic df P-Value x2/ df RMSEA CFI TLI WRMR Delta x2 Delta-df P-value 

  Single model            

  Motorway No.7 Model 96.560 50 0.000 1.93 0.02 0.999 0.998 0.994    

  Motorway No.9 Model 92.716 50 0.000 1.85 0.019 0.984 0.944 0.972    

  Multi-group analysis            

  Configural equivalence 

(Base model) 
117.865 55 0.000 2.14 0.023 0.994 0.99 1.424    

  Full equivalence (Full 

model) 
160.825 66 0.000 2.43 0.026 0.990 0.987 1.653 42.96 11 <0.000 

 

1) “Traffic flow factors” concern drivers’ 

perceptions and vehicles consisting of “truck 

involvement” divided into the accidents with and 

without trucks. The annual average daily traffic 

(AADT) is a continuous variable based on the 

roads (motorway route) and ranges of roads, which 

were considered according to the number of cars 

paying at a toll booth. A “weekday” means the 

consideration to be weekdays or holidays. 

2) “Environmental factors” include a 

“visualization” factor having two values, “clean” 

and “others” (rain, dust, or mist), a “road surface” 

factor comprising dry and wet conditions, and a 

time factor consisting of two periods of time, day 

and night. 

3) “Road factors” encompass two pavement 

types, including asphalt and concrete pavement. 

The number of traffic lanes is divided into two 

types, including four-lane roads and those with 

more than four lanes. “Road geometry” consists of 

1 = straight and 0 = other (e.g., curve, ramp, 

intersection, etc.). 

4) The measurement variable of “accident 

size” consists of four variables, which include the 

number of deaths, serious injuries, minor injuries, 

and vehicle involvement. They are all ordinal scale. 

Table 3 shows the number of injuries, 

fatalities, and the average number of vehicle 

involvement distributed by different variables used 

for analysis. The variable having the highest 

average is “truck involvement,” and the accidents 

occurring at night is 0.05 for motorway number 7 

and 0.04 for motorway number 9. For the number 

of injuries on motorway number 7, the highest 

incidence was on concrete road surfaces, while for 

motorway number 9, it was the truck-involved 

accident variable. 

 

Model Fit Indices 

The goodness-of-fit measure of the two 

models was judged by the criteria shown in Table 4 

and the values from the model prediction shown in 

Table 5. For motorway number 7, it was found that 

the value of chi-square statistics = 96.56, degree of 

freedom = 50, significant at < 0.000, and the ratio 

of χ2/df was found to be 1.93, which was an 

appropriate ratio (less than 3). The CFI and TLI 

values equal 0.999 and 0.998, respectively (where 

appropriate value should be more than 0.95). The 

RMSEA value, which should be less than 0.07 

(Hair Jr et al., 2010), is at 0.02. The WMSEA 

value, which should be less than 1, equals 0.994 

(Yu, 2002). For motorway number 9, χ2 is 92.716, 

and df is 50. The CFI and TLI values are 0.984 and 

0.944, respectively. The RMSEA and WRMR 

values are 0.019 and 0.972, respectively. Based on 

the statistical properties of the indicators, this 

model can be considered a good fit. 

For the consideration of measurement 

invariance (MI) from the difference of the chi-

square value (42.96) and df (11) of the configural 

equivalence model and the full equivalence model, 

the chi-square value has a statistical significance 

(p<0.000). One could therefore infer that the 

models of accident size occurring on motorway 

number 7 and number 9 were different in terms of 

statistical significance. 

 

Structural Equation Modeling (SEM) Results 

Considering the significance level of factor 

loadings (𝛾) that resulted from the SEM model, as 

shown in Table 6, for motorway number 7, it was 

found that the factor that most affected “accident 

size” was the “traffic flow factor” (𝛾 = 0.376, 𝑝 <

0.000). For observable variables used for 

measurement, “truck involvement” (reference 

variable) was determined first, followed by AADT 

(𝜆 = 0.845, 𝑝 < 0.000). The second factor affecting 

“accident size” was the road factor (𝛾 = 0.082, 𝑝 <

0.1), of which the indicator having the highest 

factor loading was “pavement” (reference 

variable), followed by the number of lanes (𝜆 =

−0.226, 𝑝 < 0.05) and “road geometry” (𝜆 =

0.123, 𝑝 < 0.05). The factor that least affected 

accident size was the environmental factor 
(𝛾 = 0.067, 𝑝 < 0.05), with the highest factor 

loading indicator “visualization” (reference 

variable), followed by “road surface” (𝜆 =

0.978, 𝑝 < 0.05) and “time” (𝜆 = 0.259, 𝑝 < 0.05). 

In terms of motorway number 9, only two 

latent variables significantly impacted accident 

size. 1) The first was the environmental factor (𝛾 =
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Table 6. Standardized SEM results 
 

Variables 
Motorway No.7  Motorway No.9  

Estimate S. E P-Value Estimate S. E P-Value 

Environmental factor by       

 Visualization 1.000 0.000 * 1.000 0.000 * 

 Road surface 0.978 0.005 0.000 0.988 0.002 0.000 

 Time 0.259 0.038 0.000 0.176 0.037 0.000 

Road factor by       
 Pavement 1.000 0.000 * 1.000 0.000 * 

 Number of lanes -0.226 0.049 0.000 0.036 0.034 0.299 

 Road geometric 0.123 0.044 0.000 4.134 3.597 0.250 
Traffic flow factor by       

 Truck involvement 1.000 0.000 * 1.000 0.000 * 

 AADT 0.845 0.047 0.000 0.092 0.036 0.009 

 Weekday 0.020 0.025 0.435 -0.119 0.039 0.002 

Accident size by       

 Number of vehicle 0.089 0.026 0.001 0.403 0.009 0.000 

 Number of deaths 0.700 0.176 0.000 0.096 0.042 0.023 

 Number of serious injuries 0.104 0.030 0.001 0.357 0.030 0.000 

 Number of minor injuries 0.946 0.271 0.000 0.414 0.019 0.000 
Accident size on       

 Environmental factor 0.067 0.027 0.012 0.161 0.037 0.000 

 Road factor 0.082 0.046 0.072 0.042 0.038 0.274 
  Traffic flow factor 0.376 0.097 0.000 0.072 0.033 0.028 

Remark * is reference variable in each latent variable. 

0.161, 𝑝 < 0.000). The indicator properties 

consisted of “visualization” (reference variable) 

“road surface” (𝜆 = 0.988, 𝑝 < 0.000), and “time” 

(𝜆 = 0.176, 𝑝 < 0.000). 2) The second was the 

traffic flow factor (𝛾 = 0.072, 𝑝 < 0.05). The 

properties of the measured variables consisted  

of “truck involvement” (reference variable), 

“AADT” (𝜆 = 0.092, 𝑝 < 0.01), and “weekday” 

(𝜆 = −0.119, 𝑝 < 0.01). 

Discussion 

All the indicators of the dependent variable were 

significant in both models. However, there was 

some difference in the order of the factor loadings. 

For motorway number 7, it was found that the 

number of minor injuries and deaths were the 

highest. Therefore, the crash size in this route 

should be measured by the number of injuries and 

deaths. Conversely, for the model of motorway 

number 9, the crash size should be measured by the 

number of minor injuries, the number of vehicles 

involved, and the number of serious injuries. In 

addition, the number of vehicles involved could 

indicate the crash size because crashes are 

indicated by the number of vehicles in a crash, 

which relates to the number of injuries. This result 

is similar to the findings of Lee et al. (2008), who 

noted that the number of vehicles significantly 

indicates the accident size factor. 
From the results of MI, we determined that 

the models of motorways number 7 and number 9 

were different. For example, the measurement 

model regarding the road factor only has 

significance for route number 7, whereas for the 

measurement model regarding the traffic flow 

factor, the weekday variables are only significant 

for route number 9. Thus, the policy 

recommendations for reducing the severity of 

accidents are also different. The details of these 

findings are presented in the following section. 

For motorway number 7 (Figure 3), the traffic 

flow factor resulted in the most severe injuries. The 

indicator of this factor, starting from accidents 

involving trucks, suggested that accidents with 

trucks were more serious than those without trucks. 

This finding relates to the work of Zhang, Yau, and 

Chen (2013), who found that vehicles transporting 

goods have higher risks since the truck size is 

much larger than that of personal cars. When 

accidents occur, the relatively violent strike causes 

drivers to sustain more injuries. Moreover, the 

accident size after crashes might block traffic 

lanes, possibly leading to subsequent accidents. 

Furthermore, AADT was positively significant,  

 
 

Figure 3. Crash size model of route no.7 

 Note. * p < 0.1, ** p < 0.05, *** p < 0.01 
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a finding supported by a study by Sun et al. (2016). 

The second factor that caused severe accidents with 

a approximate loading factor including the road 

factor and the environmental factor. When 

considering the measurement model, it was found 

that clean visualization and a dry road surface 

resulted in an increase in accident severity. These 

accidents possibly resulted from the high speed of 

driving when the drivers were in such conditions. 

This finding is in line with the study of Lee et al. 

(2008), who found that the increasing speed relates 

to accident size. Regarding road factors, asphalt 

road surfaces caused more accident injuries than 

those on concrete road surfaces because the friction 

coefficient between wheels and asphalt road 

surfaces is lower (Ramsdale, 2017), causing longer 

braking times and high speeds during crashes. 

Some factors were not significant because 

there were high standard errors. For example, the 

effect of the weekday factor (𝜆 = 0.020, S.E. = 0.25) 

was small. Thus, the accident size for route number 

7 did not vary on weekdays and weekends. The 

traffic volume does not differ because freight 

vehicles still operate even on weekends. 

The model of accident size on motorway 

number 9 was different from that on motorway 

number 7 (Figure 4). In other words, the two 

available latent variables, which resulted in larger 

accidents, included the environmental factor (the 

highest loading factor). Considering the measured 

model, it was found that the accidents occurring in 

clear weather on dry pavement increased accident 

size. The optimal conditions make drivers 

confident, so they drive at higher speeds. The 

traffic flow was another important factor. Similar 

to motorway number 7, having trucks involved in 

accidents also caused larger accidents on motorway 

number 9. Moreover, differences exist regarding 

accidents on weekdays and holidays. The results of 

the model suggest that, on weekdays, the accident 

size was larger than that on holidays. This finding 

resembles that of Yu et al. (2016), who found that 

more traffic quantity resulted in more risks of 

accidents. The feasible cause is that motorway 

number 9 was built near the capital of a country 

with high employment, causing a reasonably high 

quantity of vehicles on the roads on weekdays 

(Hassan and Al-Faleh, 2013). 

The factors in this model with high error 

terms include 1) the number of lanes, a result 

similar to the findings of Wu, Zhang, Zhu, Liu, and 

Tarefder (2016), who found that the number of 

lanes was insignificant for crash severity, and  

2) road geometry, a finding consistent with a study 

by Hong et al. (2019), who found that road 

geometry was insignificant in truck-involved 

crashes on expressways. 

Conclusion and Implementation 

Intercity motorways play important roles in freight 

transportation. This research aimed to understand 

the factors that affect accident size on motorways. 

The model results provide guidelines for reducing 

the severity of accidents occurring on intercity 

motorways in Thailand and promote sustainable 

freight transportation. The research has studied 

accident severity analyzed by structural equation 

modeling (SEM) because accident size cannot be 

directly measured. The measured variables include 

the number of minor injuries, serious injuries, 

deaths, and the number of vehicles involved in the 

accidents. The independent variables consist of 

environmental, road, and traffic flow factors. To 

consider the difference between two motorways, 

MI analysis was used to test the difference in the 

analysis of the results. 

The results of the invariance analysis showed 

that the models of accident severity on motorways 

number 7 and number 9 were different. The 

policies recommended for reducing the accident 

severity are both similar and different as follows. 

The measures, which should be implemented 

to prevent accidents on the two motorways, consist 

of two issues : 1) the management of truck driving, 

including policies such as increasing law/traffic 

enforcement to restrict the use of truck lanes, and 

2) the management of car users’ speed on 

motorways. For example, the operation can be 

carried out by determining the maximum speed 

close to the minimum speed according to Thairoads 

(2014) study to reduce victims and their levels of 

injuries. 

The results indicate that the parameters in 

both models are different. For motorway number 7, 

road organizations could consider reducing 

accident sizes by increasing the construction of 

 
 

Figure 4.  Crash size model of route no.9 

 Note. * p < 0.1, ** p < 0.05, *** p < 0.01 
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concrete surface roads. Regarding motorway 

number 9, the promotion of suitable driving speed 

should be increased, especially on weekdays. 
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Limitations and Future Research 

This study analyzed the road traffic accident data 

on intercity motorways in Thailand. To apply the 

results in other countries, researchers must consider 

the consistency of road conditions, such as speed 

limits, vehicle types, land-use policies, and traffic 

volume. Another limitation of this study is the 

factor of driver characteristics and driver 

behaviors, especially truck drivers who drive 

freight vehicles. Future research could focus on 

truck driver behavior to create policies to use for 

third-party logistics providers. 
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